Feb 16: Issue 111

Feb 2016 : Issue 111 References

pg 12 Is sugar public enemy no 1?

1. Committee on Medical Aspects of Food Policy (COMA) (1994). Dietary Reference Values. London: HMSO

2. Scientific Advisory Committee on Nutrition (SACN) (2015). Carbohydrates and health. London: SACN. www.gov.uk/government/publications/sacn-carbohydrates-and-health-report

3. World Health Organisation (2015). Sugars intake for adults and children. www.who.int/nutrition/publications/guidelines/sugars_intake/en/

4. Bates B et al (2014). National Diet and Nutrition Survey; rolling programme years 1-4. London: FSA/PHE

5. Kantar (2014). presented at Food and Drink Innovation Network conference. www.fdin.org.uk/events/#/downloads

6. British Nutrition Foundation (2015). SACN guidelines meal planner. www.nutrition.org.uk/nutritioninthenews/headlines/872-newrecommendationsfibresugars.html

7. Issa AI et al (2011). Comparison of the effects of whole and juiced fruits and vegetables on enamel demineralisation in situ. Caries Res 45: 448-452

pg 16 Docosahexaenoic acid and its principle roles during pregnancy

1. Swanson D et al (2011). Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr; 3(1):1-7

2. Blasbalg TL et al (2011). Changes in consumption of n-3 PUFA and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr; 93: 950-962

3. Ruxton CHS et al (2005). The impact of long-chain n-3 polyunsaturated fatty acids on human health. Nutrition Research Reviews; 18: 113-29

4. Simopoulos AP (2011). Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol; 44(2):203-15

5. Public Health England (2015) McCance and Widdowson's composition of foods integrated dataset. Available at: www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid

6. Wenstrom KD (2014) The FDA's new advice on fish: it's complicated. Am J Obstet Gynecol; 211(5):475-478

7. EFSA (2010). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal; 8(3): 1461

8. ISFAAL (2015). Dietary fat intake by pregnant and lactating women. Available at: www.issfal.org/statements/pufa-recommendations/statement-4

9. Koletzko B et al (2007). Dietary fat intakes for pregnant and lactating women. British Journal of Nutrition; 98: 873-77

10. Koletzko B et al (2008). The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med; 36:5-14

11. Koletzko B et al (2014). Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: systematic review and practice recommendations from an early nutrition academy workshop. Ann Nutr Metab; 65(1): 49-80

12. Franke C et al (2008). Dietary intake of natural sources of docosahexaenoic acid and folate in pregnant women of three European cohorts. Ann Nutr Metab; 53(3-4): 167-74

13. Jia X et al (2015). Women who take n-3 long-chain polyunsaturated fatty acid supplements during pregnancy and lactation meet the recommended intake. Appl Physiol Nutr; 40: 1-8

14. Innis SM and Elias SL (2003). Intakes of essential n-6 and n-3 polyunsaturated fatty acids among pregnant Canadian women. Am J Clin Nutr; 77(2):473-8

15. Parra-Cabrera S et al (2011). Dietary intakes of polyunsaturated fatty acids among pregnant Mexican women. Matern Child Nutr; 7(2): 140-7

16. Zhang J et al (2013). Different intakes of n-3 fatty acids among pregnant women in 3 regions of China with contrasting dietary patterns are reflected in maternal but not in umbilical erythrocyte phosphatidylcholine fatty acid composition. Nutr Res; 33(8): 613-21

17. Dwarkanath P et al (2009). Polyunsaturated fatty acid consumption and concentration among South Indian women during pregnancy. Asia Pac J Clin Nutr; 18(3): 389-94

18. Zhao JP et al (2013). Low docosahexaenoic acid (DHA) intake and significant maternal DHA depletion in the 3rd trimester of pregnancy. Am J Epidemiol 177 (11): S140

19. Silva V et al (2014). Biomarkers of fish oil omega-3 polyunsaturated fatty acids intake in humans. Nutr Clin Pract; 29(1): 63-72.

20. Guesnet P & Alessandri JM (2011). Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) - Implications for dietary recommendations. Biochimie; 93(1): 7-12

21. Bradbury J (2011). Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients; 3(5):529-54

22. Koletzko B et al (2011). Physiological aspects of human milk lipids and implications for infant feeding: a workshop report. Acta Paediatrica; 100(11): 1405-15

23. Jensen CL et al (2010). Effects of early maternal docosahexaenoic acid intake on neuropsychological status and visual acuity at five years of age of breast-fed term infants. The Journal of Pediatrics; 157(6): 900-5

24. Jensen CL et al (2005). Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am J Clin Nutr; 82: 125-32

25. Judge MP et al (2007a). Maternal consumption of a docosahexaenoic acid-containing functional food during pregnancy: benefit for infant performance on problem-solving but not on recognition memory tasks at age 9 months. Am J Clin Nutr; 85: 1572-7

26. Helland IB et al (2003). Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age. Pediatrics; 111(1): e39-44

27. van Goor SA et al (2011). The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at 18 months. Prostaglandins Leukot Essent Fatty Acids; 84(5-6): 139-46

28. Gould JF et al (2014). Randomised controlled trial of maternal omega-3 long-chain PUFA supplementation during pregnancy and early childhood development of attention, working memory, and inhibitory control. Am J Clin Nutr; 99(4):851-9

29. Dunstan JA et al (2008). Cognitive assessment of children at age 2(1/2) years after maternal fish oil supplementation in pregnancy: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed; 93(1):F45-50

30. Judge MP & Harel O (2007b). A docosahexaenoic acid-functional food during pregnancy benefits visual acuity at four but not six months of age. Lipids; 42: 117-22

31. Malcolm CA et al (2003). Scotopic electroretinogram in term infants born of mothers supplemented with docosahexaenoic acid during pregnancy. Invest Ophthalmol Vis Sci; 44(8):3685-91

32. Dunstan JA et al (2007). The effects of fish oil supplementation in pregnancy on breast milk fatty acid composition over the course of lactation: a randomized controlled trial. Pediatr Res; 62(6):689-94

33. Birch EE et al (2010). The DIAMOND Study: a double-masked, randomised controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am J Clin Nutr; 91: 848-59

34. Stark KD et al (2005). Alcohol consumption in pregnant, black women is associated with decreased plasma and erythrocyte docosahexaenoic acid. Alcohol Clin Exp Res; 29(1):130-40

35. Oken E et al (2013). A pilot randomised controlled trial to promote healthful fish consumption during pregnancy: the Food for Thought Study. Nutr J; 12:33

36. Bergmann RL et al (2008). Supplementation with 200mg/Day DHA from mid-pregnancy through lactation improves the DHA status of mothers with habitually low fish intake and of their infants. Ann Nutr Metab; 52: 157-66

37. Sherry CL et al (2015). DHA supplementation in lactating women increases breast milk and plasma DHA concentrations and alters infant omega 6:3 fatty acid ratio. Prostaglandins, leukotrienes and essential fatty acids; 95: 63-9

38. Nishimura RY et al (2014). Dietary polyunsaturated fatty acid intake during late pregnancy affects fatty acid composition of mature breast milk. Nutrition; 30: 685-89

39. Emmett R et al (2013). Expanding awareness of docosahexaenoic acid during pregnancy. Nutrients; 5(4): 1098-109

40. Luxwolda MF et al (2014). DHA status is positively related to motor development in breastfed African and Dutch infants. Nutr Neurosci;17(3):97-103

41. Judge MP et al (2012). Maternal consumption of a DHA-containing functional food benefits infant sleep patterning: an early neurodevelopmental measure. Early Hum Dev; 88(7): 531-7. 24

42. Courville AB et al (2011). Consumption of a DHA-containing functional food during pregnancy is associated with lower infant ponderal index and cord plasma insulin concentration. Br J Nutr; 106(2): 208-12

43. Markhus MW et al (2013). Low omega-3 index in pregnancy is a possible biological risk factor for postpartum depression. PLOS One; 8(7): e67617.

44. CONSORT (2010). Available at: www.consort-statement.org/consort-2010

pg 23 Infant Milk Intolerance and allergy are you sure?

1 Johansson sg et al (2004). revised nomenclature for allergy for global use: report of the nomenclature review Committee of the World allergy Organisation. JaCi.; 113: 832-836

2 Allergy UK - http://www.allergyuk.org/allergy-statistics <accessed 04/01/16>

3 NICE (2011). CG 116 Food allergy in children and young people: Diagnosis and assessment of food allergy in children and young people in primary care and community settings. www.nice.org.uk/nicemedia/live/13348/57929/57929.pdf

4 Nwaru BI, Hickstein L, Panesar SS, Roberts G, Muraro A and Sheikh A, on behalf of the EAACI Food Allergy and Anaphylaxis Guidelines Group. Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy 2014; 69: 992-1007

5 Nwaru et al. The epidemiology of food allergy in Europe: protocol for a systematic review. Clinical and Translational Allergy 2013, 3:13. www.ctajournal.com/content/3/1/13

6 Heyman MB (2006). Lactose intolerance in infants, Children and adolescents. Paediatrics; 118: 1279-1286

7 de Koker CE, Shah N, Mayer R (2014). The differences between lactose intolerance and cows' milk protein allergy. J Family Healthcare; 24 (1): 14-20

8 Shulman RJ, Wong WW, O'Brian smith E (2005). Influence of changes in lactase activity and small-intestinal mucosal growth on lactose digestion and absorption in preterm infants. Am J Clin nutr; 81:472-479

9 You Gov reports, (2015). http://reports.yougov.com/sectors/food-drink/food-drink-uk/free-from-foods/ <accessed 04/01/16>

pg 28 Fortification policy... still waiting

Information Sources

1 Arens U (2005). Folic Acid Fortification in USA. NHD Magazine, November 2005

2 Arens U (2007). Thinking about folic acid. NHD Magazine, February 2007

3 Department of Health (1992). Folic acid and the prevention of neural tube defects; report form an expert advisory group. Health Publications Unit, Heywood, Lancashire

4 MRC Vitamin Study Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet, 1991, 238: 131-137

5 National Diet and Nutrition Survey rolling Programme (NDNS RP) supplementary report: blood folate results for the UK as a whole, Scotland and Northern Ireland (Years 1 to 4 combined) and Wales (Years 2 to 5 combined). Public Health England, London, 2015

6 SACN letter date 20 October 2015. Folate status of women in the United Kingdom and the risk of congenital neural tube defects (NTD). Accessed 20.11.15 www.sacn.gov.uk

pg 30 Feeding critically ill obese patients

1 McKinsey Global Institute (2014). Overcoming obesity: An initial economic analysis. Accessed online: www.mckinsey.com/Insights/Economic_Studies/How_the_world_could_better_fight_obesity (Dec 2015)

2 Winfield RD (2014). Caring for the critically ill obese patient: challenges and opportunities, 29(6): 747-750

3 Public Health England (2016). Obesity and Mortality. Accessed online: www.noo.org.uk/NOO_about_obesity/mortality (Dec 2015).

4 Saker Y, Alhussami I, Nanchal R et al (2015). Being overweight is associated with greater survival in ICU patients: Results from the Intensive Care Over Nations Audit. Critical Care Medicine, 43: 2623-2632

5 Dickerson R (2013). The obesity paradox in the ICU: real or not? Critical Care, 17: 154-155

6 Martino JL, Stapleton R D, Wang M et al (2011). Extreme obesity and outcomes in critically ill patients. Chest, 140(5): 1198-1206

7 Kushner RF and Drover MD (2011). Current strategies of Critical Care assessment and therapy of the obese patient (Hypocaloric Feeding): What are we doing and what do we need to do? Journal of Parenteral and Enteral Nutrition, 35(1): 36S-43S

8 Taylor ST, Dumont N, Clemente R et al (2015). Critical Care: Meeting protein requirements without overfeeding energy, Clinical Nutrition ESPEN, 340-362

9 Frankenfield D, Ashcraft C and Galvan D (2013). Prediction of Resting Metabolic Rate in critically ill patients at the extremes of Body Mass Index. Journal of Parenteral and Enteral Nutrition, 37: 361-367

10 Todorovic VE and Micklewright A (2007). The Parenteral and Enteral Group of the British Dietetic Association: A pocket guide to clinical nutrition

11 Choban P, Dickerson R and Malone A et al (2013). ASPEN. Clinical Guidelines: Nutrition support of hospitalised adult patients with obesity. Journal of Parenteral and Enteral Nutrition, 37(6): 714-744

12 McClave SA, Martindale RG, Vanek VW et al (2009). Guidelines for the provision and assessment of Nutrition Support Therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). Journal of Parenteral and Enteral Nutrition, 33(3); 277-316

13 Mongensen KM, Andrew BY, Corona JC et al (2015). Validation of the Society of Critical Care Medicine and the American Society for Parenteral and Enteral Nutrition recommendations for caloric provision to critically ill obese patients: A pilot study. Journal of Parenteral and Enteral Nutrition, 1-9

14 Cerra FB, Benitez MR, Blackburn GL et al (1997). Applied nutrition in ICU patients: a consensus statement of the American College of Chest Physicians. Chest, 111: 769-778

15 Kreymann G, DeLegge MH, Luft G et al (2015). A nutrition strategy for obese ICU patients with special consideration for the reference of protein. Clinical Nutrition ESPEN, 10: e160-e166

16 Lemmens HJ, Brodsky JB and Bernstein DP (2005). Estimating ideal body weight - a new formula. Obesity Surgery, 15:1082-3

17 Dickerson RN, Boschert KJ, Kudsk SA et al (2002). Hypocaloric enteral tube feeding in critically obese patients. Nutrition, 18: 241-2446

pg 39 Food allergy in adults

1 Muraro A, Werfel T, Hoffmann-Sommergruber K, Roberts G, Beyer K, Bindslev-Jensen C, Cardona V, Dubois A, duToit G, Eigenmann P, Fernandez Rivas M, Halken S, Hickstein L, Høst A, Knol E, Lack G, Marchisotto MJ, Niggemann B, Nwaru BI, Papadopoulos NG, Poulsen LK, Santos AF, Skypala I, Schoepfer A, Van Ree R, Venter C, Worm M, Vlieg-Boerstra B, Panesar S, de Silva D, Soares-Weiser K, Sheikh A, Ballmer-Weber BK, Nilsson C, de Jong NW, Akdis CA, EAACI Food Allergy and Anaphylaxis Guidelines Group. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 2014, 69:1008-1025

2 Skypala IJ, Bull S, Deegan K, Gruffydd-Jones K, Holmes S, Small I, Emery PW, Durham SR. The prevalence of pollen-food syndrome (PFS) and prevalence and characteristics of reported food allergy; a survey of UK adults aged 18-75 incorporating a validated PFS diagnostic questionnaire. Clin Exp Allergy. 2013, 43:928-940

3 Burney PGJ, Potts J, Kummeling I, Mills ENC, Clausen M, Dubkiene R, Barreales L, Fernandez-Perez C, Fernandez-Rivas M, Le TM, Knulst AC, Kowalski ML, Lidholm J, Ballmer-Webber BK, Braun-Fahlander C, Mustakov T, Kralimarkova T, Popov T, Sakellariou A, Papadopolous NG, Versteeg SA, Zuidmeer L, Akkerdaas JH, Hofmann-Sommergruber, van Ree R. The prevalence and distribution of food sensitisation in European Adults. Allergy. 2014,69:365-371

4 Osterballe M, Mortz CG, Hansen TK, Andersen KE, Bindslev-Jensen C. The prevalence of food hypersensitivity in young adults. Pediatr Allergy Immunol. 2009;20:686-689

5 Zuberbier T, Edenharter G, Worm M, Ehlers I, Reimann S, Hantke T, Roehr CC, Bergmann KE, Niggemann B. Prevalence of adverse reactions to food in Germany - a population study. Allergy 2004;59:338-345

6 Patelis A, Gunnbjörnsdottir M, Borres MP, Burney P, Gislason T, Torén K, Forsberg B, Alving K, Malinovschi A, Janson C. Natural history of perceived food hypersensitivity and IgE sensitisation to food allergens in a cohort of adults. PLoS One. 2014, 10;9:e85333

7 Skripak JM, Matsui EC, Mudd K, Wood RA. The natural history of IgE-mediated cow's milk allergy. J Allergy Clin Immunol. 2007;120:1172-1177

8 de Boissieu D, Dupont C. Natural course of sensitization to hen's egg in children not previously exposed to egg ingestion. Eur Ann Allergy Clin Immunol. 2006;38:113-117

9 Kotaniemi-Syrjanen A, Palosuo K, Jartti T, Kuitunen M, Pelkonen AS, Makela MJ. The prognosis of wheat hypersensitivity in children. Pediatr Allergy Immunol. 2010; 21:e421-426

10 Savage JH, Kaeding AJ, Matsui EC, Wood RA. The natural history of soy allergy. J Allergy Clin Immunol. 2010, 125:683-686

11 Deng Y, Misselwitz B, Dai N, Fox M. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management. Nutrients. 2015;7:8020-8035

12 Wuthrich B, Schmid A, Walther B, Seiber R. Milk consumption does not lead to mucus production or occurrence of asthma. J Am Coll Nutr. 2005;24:547S-555S

13 Monsbakken KW, Vandvik PO, Farup PG. Perceived food intolerance in subjects with irritable bowel syndrome - aetiology, prevalence and consequences. Eur J Clin Nutr. 2006;60:667-672

14 Gibson PR, Shepherd SJ. Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach. J Gastroenterol Hepatol. 2010;25:252-258

15 Catassi C, Elli L, Bonaz B, Bouma G, Carroccio A, Castillejo G, Cellier C, Cristofori F, de Magistris L, Dolinsek J, Dieterich W, Francavilla R, Hadjivassiliou M, Holtmeier W, Körner U, Leffler DA, Lundin KE, Mazzarella G, Mulder CJ, Pellegrini N, Rostami K, Sanders D, Skodje GI, Schuppan D, Ullrich R, Volta U, Williams M, Zevallos VF, Zopf Y, Fasano A. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts' Criteria. Nutrients. 2015;7:4966-4977

16 Romano A, Di Fonso M, Giuffreda F, Quaratino D, Papa G, Palmieri, et al. Diagnostic work-up for food-dependent, exercise-induced anaphylaxis. Allergy. 1995;50(10):817-24

17 Shadick NA, Laing MH, Partridge AJ, Bingham C, Wright E, Fossel AH, Sheffer AL. The natural history of food-dependant exercise-induced anaphylaxis: Survey results from 10-year follow-up study. J Allergy Clin Immunol 1999;104:123-127

18 Hompes S, Dölle S, Grünhagen J, Grabenhenrich L, Worm M. Elicitors and co-factors in food-induced anaphylaxis in adults. Clin Transl Allergy. 2013;3(1):38.

19 Beaudouin E, Renaudin JM, Morisset M, Codreanu F, Kanny G, Moneret-Vautrin DA. Food-dependent, exercise-induced anaphylaxis - update and current data. Allerg Immunol Paris 2006;38:45-51

20 Romano A, Di Fonso M, Guiffreda F, Papa G, Artesani MC, Viola M, Venuti A, Palmeiri V, Zeppilli P. Food-dependent exercise-induced anaphylaxis: clinical and laboratory findings in 54 subjects. Int Arch Allergy Immunol 2001;125:264-272

21 Kamdar TA, Peterson S, Lau CH, Saltoun CA, Gupta RS, Bryce PJ. Prevalence and characteristics of adult-onset food allergy. J Allergy Clin Immunol Pract. 2015;3:114-115

22 Khan et al. Adult seafood allergy in the Texas Medical Center: A 13-year experience. Allergy Rhinol (Providence). 2011;2:71-7

23 Worm M, Eckermann O, Dölle S, Aberer W, Beyer K, Hawranek T, Hompes S, Koehli A, Mahler V, Nemat K, Niggemann B, Pföhler C, Rabe U, Reissig A, Rietschel E, Scherer K, Treudler R, Ruëff F. Triggers and treatment of anaphylaxis: an analysis of 4,000 cases from Germany, Austria and Switzerland. Dtsch Arztebl Int.2014;111:367-375

24 Asai Y, Yanishevsky Y, Clarke A, La Vieille S, Delaney JS, Alizadehfar R, Joseph L, Mill C, Morris J, Ben-Shoshan M. Rate, triggers, severity and management of anaphylaxis in adults treated in a Canadian emergency department. Int Arch Allergy Immunol. 2014;164(3):246-52

25 Reese G, Ayuso R, Lehrer SB. Tropomyosin: an invertebrate pan−allergen. Int Arch Allergy Immunol 1999;119:247-258

26 Albrecht M, Alessandri S, Conti A, Reuter A, Lauer I, Vieths S, Reese G. High level expression, purification and physico- and immunochemical characterisation of recombinant Pen a 1: a major allergen of shrimp. Mol Nutr Food Res. 2008;52:S186-95

27 Sahabudin S, Misnan R, Yadzir ZH, Mohamad J, Abdullah N, Bakhtiar F, Murad S. Identification of Major and Minor Allergens of Black Tiger Prawn (Penaeus monodon) and King Prawn (Penaeus latisulcatus). Malays J Med Sci. 2011, 18:27-32

28 Lopata AL, O'Hehir RE, Lehrer SB. Shellfish allergy. Clin Exp Allergy. 2010;40:850-8

29 Lehrer SB, Kim L, Rice T, Saidu J, Bell J, Martin R. Transfer of shrimp allergens to other foods through cooking oil. J Allergy Clin Immunol 2007;119(S1):S112

30 Hansen TK, Bindslev-Jensen C, Skov PS, Poulsen LK. Codfish Allergy in Adults: IgE Cross-Reactivity Among Fish Species Ann Allergy Asthma Immunol 1997;78:187-194

31 Kobayashi Y, Yang T, Yu CT, Ume C, Kubota H, Shimakura K, Shiomi K, Hamada-Sato N. Quantification of major allergen parvalbumin in 22 species of fish by SDS-PAGE. Food Chem. 2016;194:345-353

32 Schulkes KJ, Klemans RJ, Knigge L, de Bruin-Weller M, Bruijnzeel-Koomen CA, Marknell deWitt A, Lidholm J, Knulst AC. Specific IgE to fish extracts does not predict allergy to specific species within an adult fish allergic population. Clin Transl Allergy. 2014;4:27

33 Turner P, Ng I, Kemp A, Campbell D. Seafood allergy in children: a descriptive study. Ann Allergy Asthma Immunol 2011, 106:494-501.

34 Attaran RR, Probst F. Histamine fish poisoning: a common but frequently misdiagnosed condition. Emerg Med J. 2000;19:474-475

35 García BE, Lizaso MT. Cross-reactivity syndromes in food allergy. J Investig Allergol Clin Immunol. 2011;21(3):162-70

36 Ortolani C, Ispano M, Pastorello E, Bigi A and Ansaloni R. The Oral Allergy Syndrome. Ann Allergy. 1988;61:47-52

37 Egger M, Mutschlechner S, Wopfner N, Gadermaier G, Briza P, Ferreira F. Pollen-food syndromes associated with weed pollinosis: an update from the molecular point of view. Allergy. 2006;61:461-476

38 Radauer C, Breiteneder H. Evolutionary biology of plant food allergens. J Allergy Clin Immunol. 2007 Sep;120(3):518-25

39 Skypala IJ, Calderon MA, Leeds AR, Emery P, Till SJ, Durham SR. Development and validation of a structured questionnaire for the diagnosis of oral allergy syndrome in subjects with seasonal allergic rhinitis during the UK birch pollen season. Clin Exp Allergy. 2011;41(7):1001-11

40 Vieths S, Scheurer S, Ballmer-Weber B. Current understanding of cross-reactivity of food allergens and pollen. Ann N Y Acad Sci. 2002;964:47-68

41 De Swert LF, Gadisseur R, Sjölander S, Raes M, Leus J, Van Hoeyveld E. Secondary soy allergy in children with birch pollen allergy may cause both chronic and acute symptoms. Pediatr Allergy Immunol. 2012;23:117-123

42 Skolnick HS, Conover-Walker MK, Koerner CB, Sampson HA, Wesley Burks W, Wood RA. The natural history of peanut allergy. J Allergy Clin Immunol. 2001;107: 367-374

43 Fleischer D, Conover-Walker M, Matsui E, Wood R. The natural history of tree nut allergy. J Allergy Clin Immunol. 2005;116:1087-1093

44 Lieberman JA, Glaumann S, Batelson S, Borres MP, Sampson HA, Nilsson C. The utility of peanut components in the diagnosis of IgE-mediated peanut allergy among distinct populations. J Allergy Clin Immunol Pract. 2013;1:75-82

45 Masthoff LJ, Mattsson L, Zuidmeer-Jongejan L, Lidholm J, Andersson K, Akkerdaas JH, et al. Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. J Allergy Clin Immunol. 2013 ;132(2):393-9

46 Berneder M, Bublin M, Hoffmann-Sommergruber K, Hawranek T, Lang R. Allergen. Chip diagnosis for soy-allergic patients: Gly m 4 as a marker for severe food-allergic reactions to soy. Int Arch Allergy Immunol. 2013;161:229-233

47 Wagner S, Breiteneder H. The latex-fruit syndrome. Biochem Soc Tans. 2002;30:935-940

48 Wongrakpanich S, Klaewsongkram J, Chantaphakul H, Ruxrungtham K. Jackfruit anaphylaxis in a latex allergic patient. Asian Pac J Allergy Immunol. 2015;33:65-68.

49 Ganglberger E, Radauer C, Wagner S, Ríordáin G, Beezhold DH, Brehler R, Niggemann B. Scheiner O, Jensen-Jarolim E, Breiteneder H. Hev b 8, the Hevea brasiliensis latex profilin, is a cross-reactive allergen of latex, plant foods and pollen. Int Arch Allergy Immunol. 2001 Jul;125(3):216-27

50 Salcedo G, Sanchez-Monge R, Diaz-Perales A, Garcia-Casado G, Barber D. Plant non-specific lipid transfer proteins as food and pollen allergens. Clin Exp Allergy. 2004 Sep;34(9):1336-41

51 Fernández-Rivas M, González-Mancebo E, Rodríguez-Pérez R, Benito C, Sánchez-Monge R, Salcedo G, Alonso MD, Rosado A, Tejedor MA, Vila C, Casas ML. Clinically relevant peach allergy is related to peach lipid transfer protein, Pru p 3, in the Spanish population. J Allergy Clin Immunol. 2003;112:789-795

52 Palacín A, Gómez-Casado C, Rivas LA, Aguirre J, Tordesillas L, Bartra J, Blanco C, Carrillo T, Cuesta-Herranz J, de Frutos C, Alvarez-Eire GG, Fernández FJ, Gamboa P, Muñoz R, Sánchez-Monge R, Sirvent S, Torres MJ, Varela-Losada S, Rodríguez R, Parro V, Blanca M, Salcedo G, Díaz-Perales A. Graph based study of allergen cross-reactivity of plant lipid transfer proteins (LTPs) using microarray in a multicenter study. PLoS One. 2012;7(12):e50799. doi: 10.1371/journal.pone.0050799. Epub 2012 Dec 14

53 Pascal M, Muñoz-Cano R, Reina Z, Palacín A, Vilella R, Picado C, Juan M, Sánchez-López J, Rueda M, Salcedo G, Valero A, Yagüe J, Bartra J. Lipid transfer protein syndrome: clinical pattern, cofactor effect and profile of molecular sensitization to plant-foods and pollens. Clin Exp Allergy. 2012;42:1529-1539

54 Skypala I, Donovan J, Till S. The evaluation of peach lipid transfer protein Pru p 3 as a marker of severe plant food allergy in a UK adult clinic population (Abstract). Allergy 2010;65 Supplement:398

55 Namork E, Fæste CK, Stensby BA, Egaas E, Løvik M Severe allergic reactions to food in Norway: a ten year survey of cases reported to the food allergy register. Int J Environ Res Public Health. 2011;8(8):3144-3155

56 Pastorello EA, Farioli L, Pravettoni V, Ispano M, Scibola E, Trambaioli C, Giuffrida MG, Ansaloni R, Godovac-Zimmermann J, Conti A, Fortunato D, Ortolani C. The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein. J Allergy Clin Immunol. 2000;106:744-751

57 Heffler E, Nebiolo F, Asero R, Guida G, Badiu I, Pizzimenti S, Marchese C, Amato S, Mistrello G, Canaletti F, Rolla G. Clinical manifestations, co-sensitizations, and immunoblotting profiles of buckwheat-allergic patients. Allergy. 2011;66:264-70

58 Verma AK, Kumar S, Das M, Dwivedi PD. A comprehensive review of legume allergy. Clin Rev Allergy Immunol. 2013;45:30-46

59 Sanchez-Monge R, Lopez-Torrejón G, Pascual CY, Varela J, Martin-Esteban M, Salcedo G. Vicilin and convicilin are potential major allergens from pea. Clin Exp Allergy. 2004;34:1747-1753

60 Papanikolaou I, Stenger R, Bessot JC, de Blay F, Pauli G. Anaphylactic shock to guar gum (food additive E412) contained in a meal substitute. Allergy. 2007;62:822

61 Faeste CK, Namork E, Lindvik H. Allergenicity and antigenicity of fenugreek (Trigonella foenum-graecum) proteins in foods. J Allergy Clin Immunol. 2009;123:187-194